
A Genetic Algorithm based Back Propagation Neural
Network for Weather Forecasting

(ANN Course Project)

Mehak Gupta
mehakgupta210@gmail.com

Roll No: 12118046

Lilly Kumari
lilly.k0501@gmail.com.

Roll No:12214012

Abstract
Precise weather forecasting is important in today’s world considering that the agricultural and
industrial sectors are heavily dependent on the weather conditions. Also, forecasting warns us
about natural disasters. Because of the non-linearity in climatic physics, neural networks are
suitable to predict these meteorological processes. Back Propagation algorithm using gradient
descent method is the most important algorithm to train a neural network for weather forecasting.
Back propagation algorithm suffers from several problems like getting stuck in local minima. In
this paper, in order to overcome some of these problems, an integrated back propagation based
genetic algorithm technique to train artificial neural networks is proposed. In the proposed
technique, back propagation is combined with genetic algorithm in such a way that the pitfalls of
the algorithm get converted to benefits. The results and comparison of the technique with the
previous one are enlisted along with.

1. Main Objectives

- Use genetic algorithm for updation of
weights in back propagation.

- Train the model with weather
forecasting data and compare.

2. Introduction and Background

Forecasting is a phenomenon of knowing
what may happen to a system in the next
coming time The parameters required to
predict weather are enormously complex
such that there is uncertainty in prediction
even for a short period. Inspired by the
brain, neural networks are an interconnected
network of processing elements called
neurons. Neural networks learn by example
i.e. they can be trained with known
examples [7]. One of the most popular
training algorithms in the domain of neural
networks used so far, for weather
forecasting is the back propagation
algorithm. It is a gradient descent method.
The algorithm suffers from many problems.
Several attempts have been made by various
researchers to solve these problems using
genetic algorithms, the computerized search
and optimization algorithms that mimic the
principle of natural genetics and natural

selection [5], [6]. But, in the field of weather
forecasting, such efforts are still to be put
up. So, the motivation of this work is firstly,
to integrate BPN with GA in such a way that
the disadvantages of back propagation
algorithm get converted to benefits, used
further for an accurate weather forecasting
model and secondly, to perform comparison
between the two main techniques- back
propagation network based on gradient
descent technique and back propagation
network based on genetic algorithm to train
the neural network. Language used for
coding is C in Visual Studio. The remainder
of the article is organized as follows. Section
2 and Section 3 introduce the back
propagation algorithm and genetic
algorithms respectively. The details of the
integrated BP/GA technique for weather
forecasting model are shown in
Section 4, followed by results in Section 5.
Finally, conclusions are summarized in
Section 6.

3. Backpropagation Neural Network
Training

Initialize all weights in network;
While terminating condition is not satisfied
{ for each training sample X in sample

{ // propagate the inputs forward:
for each hidden or output layer unit
j { Ij=Σj WijOi ; //Compute the net input of
unit j with respect to the previous layer, i
Oj=1/(1+e-Ij);}
//Compute the output of each unit j
//Backpropagate the errors
for each unit j in the output layer
Errj=Oj (1-Oj) (Tj – Oj);//Compute the
error for each unit j in the hidden
layers,from the last to the first hidden layer
Errj=Oj (1-Oj) Σk ErrkWjk ; //Compute the
error with respect to the next higher layer,k
for each weight Wij in network
{ ΔWij=(l)Err jOi
//Weight increment
Wij=Wij+ΔWij;}//weight update } }
The weights in the network are initialized to
small random numbers (e.g., ranging from –
0.0 to 1.0).Then propagate the inputs
forward, the input and output of each unit in
the hidden and output layers are computed.
First, the training sample is fed to the input
layer of the network. For unit j in the input
layer, its output is equal to its input, that is,
Oj= Ij for input unit j. The net input to each
unit in the hidden and output layers is
computed as a linear combination of its
inputs. The inputs to the unit are, in
fact, the outputs of the units connected to it
in the previous layer. To compute the net
input to the unit, each input connected to the
unit is multiplied by its corresponding
weight, and this is summed. Given a unit j in
a hidden or output layer, the net input, Ij, to
unit j is Ij= Σi Wij Oi, where wij is the weight
of the connection from unit i in the previous
layer to unit j;
Oi is the output of unit I from the previous
layer. Each unit in the hidden and output
layers takes its net input and then applies
an activation function to it. The function
symbolizes the activation of the neuron
represented by the unit. The logistic or
sigmoid function is used. Given the net input
Ij to unit j, then Oj, the output of unit j,is
computed as Oj=1/(1+e-Ij).This function is
also referred to as a squashing function[8],
since it maps a large input domain onto the
smaller range of 0 to 1. The error is then

propagated backwards by updating the
weights to reflect the error of the network’s
prediction. For a unit j in the output layer,
the error Errj is computed by Errj=Oj(1-
Oj)(Tj-Oj), where Oj is the actual output of
unit j, and Tj is the true output, based on the
known class label of the given training
sample. Oj(1-Oj) is the derivative of the
logistic function. To compute the error of a
hidden layer unit j, the weighted sum of the
errors of the units connected to unit j in the
next layer is considered. The error of a
hidden layer unit j is Errj = Oj (1-Oj) Σk Errk

Wjk ,where Wjk is the weight of the
connection from unit j to a unit k in the next
higher layer, and Errk is the error of
unit k. The weights are updated to reflect the
propagated errors. Weights are updated by
the following equations, where Δwij is the
change in weight wij: Δwij=(l) ErrjOi
wi j= wij+ Δwij. The variable l is the
learning rate ,a constant typically
having a value between 0.0 and 1.0.
Training stops when
• all Δwij in the previous epoch were so
small
as to below some specified threshold, or
• the percentage of samples misclassified in
the previous epoch is below some threshold,
or
• a prespecified number of epochs has
expired.

4. Genetic Algorithm.

A genetic algorithm is an iterative procedure
maintaining a population of structures that
are candidate solutions to specific domain
challenges [9]. During each temporal
increment (called a generation), the
structures in the current population are rated
for their effectiveness as mutation. Genetic
Algorithms (GAs) are search algorithms
based on the mechanics of the natural
selection process (biological evolution). The
most basic concept is that the strong tend to
adapt and survive while the weak tend to die
out. That is, optimization is based on
evolution, and the "Survival of the fittest"

concept. GAs has the ability to create an
initial population of feasible solutions,
and then recombine them in a way to guide
their search to only the most promising areas
of the state space. Each feasible solution is
encoded as a chromosome (string) also
called a genotype, and each chromosome is
given a measure of fitness via a fitness
(evaluation or objective) function. The
fitness of a chromosome determines its
ability to survive and produce offspring. A
finite population of chromosomes is
maintained. GAs use probabilistic rules to
evolve a population from one generation to
the next. The generations of the new
solutions are developed by genetic
recombination operators
Biased Reproduction: selecting the fittest
to reproduce
Crossover: combining parent chromosomes
to produce
children chromosomes
Mutation: altering some genes in a
chromosome.

Code for mutation:-

void mutate(int **mp)
{
int i,j,k,x[6],y;
float z;
for(i=1;i<=p;i++)
{
y = rand()%100;
z = y/100.00;
if(z<=pm)
{
for(j=1;j<=nw;j++)
{
for(k=1;k<=5;k++)
{
x[k] = mp[i][j]/pow(10,5-k);
mp[i][j] = mp[i][j]%(int)pow(10,5-k);
y = rand()%100;

z = y/100.00;
if(z<=mr)
{
y = rand()%10;
x[k] = y;
}
}

mp[i][j]=0;
for(k=4;k>=0;k--)
{
mp[i][j]+=x[5-k]*pow(10,k);
}
}
}
}

}

Crossover combines the "fittest"
chromosomes and passes superior genes to
the next generation. Mutation ensures
the entire state-space will be searched,
(given enough time) and can lead the
population out of a local minima.
Determining the size of the population is a
crucial factor. Choosing a population size
too small increases the risk of converging
prematurely to a local minimum, since the
population does not have enough genetic
material to sufficiently cover the problem
space. A larger population has a greater
chance of finding the global optimum at the
expense of more CPU time. The population
size remains constant from generation to
generation. Fitness Function Drives the
Population toward better solutions and is the
most important part of the algorithm.

5. Integrated Back Propagation based
Genetic Algorithm (BP/GA
Technique)

The proposed weather forecasting model
based on BP/GA technique starts with the
collection of weather related data, selecting
the weather parameters to be forecasted,
formation of training data set and testing
data set. Finally the methodology and its
simulation are provided.
A. Weather Parameters

Table 1.

The daily weather parameters collected from
PAU Ludhiana are shown in Table I. along
with their units of measurement. The
parameters chosen for prediction in this
setup are mean air temperature (ºC), relative
humidity (%) and daily rainfall (mm). There
is no particular reason behind this choice of
weather parameters. The choice is made just
to predict three main weather variables.
B. Research Data
The data used in this research are the daily
weather data for the Ludhiana city of Punjab
(India). The data in the unnormalized
form have been collected from the
“Meteorological Department of Punjab
Agriculture University, Ludhiana (Punjab)”
of the year 2009. Thirty days data (month of
January, 2009) have been used in this
research. First twenty five days data have
been used for training and next five days
data have been used for testing
purposes.
C. Normalization of Data
After the collection of data and selection of
the weather parameters, next issue is
normalization of data. Neural
networks generally provide improved
performance with normalized data. The use
of original data to train the neural network
may cause convergence problem. All the
weather data sets were, therefore,
transformed into values between 0 and 1

through dividing the difference of actual and
minimum values by the difference of
maximum and minimum values [8].
D. Methodology
Chromosomes form the initial population
which is randomly generated and consist of
some number of genes. Every gene is
encoded of a randomly chosen string length.
A particular number of weights are extracted
from each chromosome depending upon the
number of genes a chromosome have [1].
This calculation is done as follows:
Let the network configuration of the
network is l-m-n. Therefore, the numbers of
weights (genes), W that are to be
determined are:
W = (l + n) * m (1)
With each gene being a real number, and
taking the gene length as d, the string
representing the chromosomes of
weights will have a length of:
C = W * d (2)
It represents the weight matrices of the
input-hidden-output layers. With this weight
set, the network is trained for the first
cycle and the cumulative error is calculated
over the inputs obtained from weather
forecasting data.
The search for selecting an individual is
guided by the fitness of each individual i.e.
evaluating the quality of each
chromosome [9]. So, the fitness function is
evaluated by reciprocating the cumulative
error value as follows.
F = 1/MSE (3)
More is the fitness value; more are the
chances of a chromosome to be selected for
reproducing an offspring. With this criterion
in mind, mating pool is prepared by
replacing the individual with minimum
fitness value by individual having maximum
fitness value. For cross over, a two-point
cross over method will be used to prepare
the new population and the network is
considered to be trained when 95% of the
individuals have same fitness value [1], [13].
The various steps of weather forecasting
model based on BP/GA algorithm are
explained below and are shown in fig.1:

Sr.
no.

Parameters Unit

1 Air Temperature ºC

2 Soil Temperature ºC

3 Relative Humidity %

4 Vapor pressure mm

5 Wind speed Km/
h

6 Wind direction --

7 Sunshine hrs

8 Rainfall mm

9 Evaporation mm

1. Start: Generate random population of ‘p’
chromosomes (suitable solutions for the
problem).
2. Extraction: Extract weights for input-
hidden-output (lm- n) layers from each
chromosome x.
3. Fitness: Evaluate the fitness f(x) of each
chromosome x in the population by
reciprocating the cumulative
error values obtained for each input set
(weather forecasting data).
4. New population: Create a new population
by repeating following steps until the new
population is complete
• Selection: Select two parent chromosomes
from a population according to their fitness
(the better fitness, the bigger chance to be
selected)
• Crossover: Cross over the parents to form
new offspring (children). If no crossover
was performed, offspring is the exact copy
of parents.
• Mutation: With a mutation probability
mutate new offspring at each position in
chromosome.
• Acceptance: Place the new offspring in the
new population.
5. Repeat: Repeat steps 3 to 5 until stopping
condition is met.

Code for checking when to stop:-

int checkstop(int **c,float *f,int *fmax)
{
int maxt=0,ctr,i,j,maxi;
for(i=1;i<=p;i++)
{
ctr=0;
for(j=1;j<=p;j++)
{
if(f[j]==f[i])
{
ctr++;
}
}
if(ctr>maxt)
{
maxt=ctr;
maxi=i;
}
}
for(i=1;i<=nw;i++)
{
fmax[i] = c[maxi][i];
}
if(maxt/p>=0.95)
{
return(1);

}
else
{
return(0);
}
}

6. Test: Return the best solution in current
population using the test set inputs (weather
forecasting data) and the weights (obtained
in the above five steps).

E. Simulation
In this research, 3-2-3 neural network
architecture has been used. The number of
input neurons is 3 representing the date
fields, the number of hidden neurons is 2 for
processing and the number of outputs is 3
representing the weather variables
to be forecasted. A real coding system has
been adopted for coding the chromosomes.
As the network configuration is 3-
2-3, therefore, the numbers of weights
(genes) to be determined are 12, as in (1).
Taking the gene length as 5, the string
representing the chromosomes of weights
will have a length of 60, as in (2). This is the
weight matrix of the inputhidden-
output layers. For cross over, we have used a
twopoint cross over selected at random and
the selection is made on the basis of fitness
value, as in (3). The stopping criterion
for the training is when fitness converges.

6. Results and Discussion

The BP/GA technique has been
implemented by taking different population
sizes. For each value of population, the
program has been executed and the error has
been calculated.

The error values corresponding to mean air
temperature are shown in Table II for the
last five days of January 2009.

Table II
Temperature for BP/GA

Day Desired
output

Forecasted
Output

Error
Value

1 96 97.8 -1.8

2 97 97.9 -0.9
3 98 98.7 -0.7
4 99 99 0.0
5 100 99.3 0.7

Table III shows the prediction of relative
humidity along with the error values.

Table III
Relative Humidity for BP/GA

The error values corresponding to daily
rainfall parameter is shown in table IV along
with the desired output and the forecasted
output for the BP/GA technique.

Table IV
Rainfall for BP/GA

The above comparison shows clearly that
the integrated BP/GA technique is more
suitable to predict weather than the
traditional gradient based back propagation
algorithm because in all cases- temperature,
humidity and rainfall; proposed BP/GA
technique is more close to the desired output
than the back propagation algorithm.

7. Conclusion

The BP/GA technique proposed here can
learn efficiently by combining the power of
both Genetic Algorithms and Back
Propagation. The methodology suggested
here is more qualified for neural networks
while training them for weather forecasting
data considering only global search. Instead

of a single point, it works with a population
of points taken as instances. It combines the
strengths of both deterministic gradient
based algorithm and stochastic optimizing
algorithm. The BP/GA based on local
gradient algorithm is more speed-efficient
than the genetic algorithm just overcoming
the weakness of agenetic algorithms. Thus
the integrated BP/GA technique’s use in
weather forecasting is encouraged.

References

[1] Rajasekaran S, Vijayalakshmi P., Neural
networks, Fuzzy Logic and Genetic
Algorithms”, New Delhi: Prentice Hall of
India, 2004.
[2] David J. Montana and Lawrence Davis,
“Training Feedforward Neural Networks
Using Genetic Algorithms”, BBN Syst. and
Tech. Corp. 10 Mouiton St. Cambridge, MA
02138
[3] Azadeh A., et al., “Integration of ANN
and GA to Predict Electrical Energy
consumption”, Dept. of Industrial Eng. and
Research Inst. Of Energy Manag. and
Planning, Univ. Tehran Iran Islamic Azad
Univ., IEEE 2552, 2006.
[4] R. Rojas “Neural Networks- The
Backpropagation Algorithm”, Springer-
Verlag, Berlin, 152, 1996.
[5] Goldberg, D. E., “Genetic Algorithms in
Search, Optimization and Machine
Learning”, Addison - Wesley. Reading, MA,
1989.
[6] Holland, J. H., “Adaptation in Natural
and Artificial Systems”, University of
Michigan Press. Ann Arbor, MA, 1975.
[7] Schalkoff, R.J., “Artificial Neural
Networks”, New York: McGraw-Hill, 1997.
[8] Maqsood I., Khan M.R. and Abraham
A., “Weather Forecasting Models Using
Ensembles of Neural Networks”, University
of Regina, Regina, SK S4S 0A2, Canada,
2004.
[9] Rao H. Sudarsana, Ghorpade Vaishali
G., Mukherjee A. , “A genetic algorithm
based back propagation network for
simulation of stressstrain response of
ceramic-matrix-composites”, Computers and

Day Desired
output

Forecasted
Output

Error
Value

1 1.9 2.1 -0.2
2 2.1 2.4 -0.3
3 2.3 2.3 0.0
4 2.7 2.6 0.1
5 3.0 2.7 0.3

Day Desired
output

Forecasted
Output

Error
Value

1 15.0 16.6 -1.6

2 16.0 17.1 -1.1
3 17.0 17.8 -0.8
4 18.0 18.6 -0.6
5 19.0 19.0 0.0

Structures, Pergamon Press, Inc, Jan. 2006
vol 84.
[10] Abraham Ajith et. al., “Soft Computing
Models for Weather Forecasting” 2002
[11] Chun Lu, Bingxue Shi, “Hybrid back
propagation/ GA for Multilayer Feedforward
Neural Networks”, Inst. of Microelectronics,
Tsinghua University Beijing 100084, China
IEEE, 2000.
[12] Ileană Ioan, Corina Rotar, Arpad Incze,
“The Optimization of Feedforward Neural
Networks Structure using Genetic
Algorithms”, Proc. 2004 Int. Conf. on
Theory and Applicat. of Math. and
Informatics, Thessaloniki, Greece, 2004.
[13] Sarangi1 Pradeepta et. al., “Short Term
Load Forecasting using Artificial Neural
Network: A Comparison with Genetic
Algorithm Implementation”, ARPN J. of
Eng. and App. Sci., Nov. 2009, vol. 9.

